Home / Software & Service News / The one critical skill many data scientists are missing

The one critical skill many data scientists are missing

data analysis

When I started to learn about data science and consider it as a career choice, there was a diagram that I came across regularly and still come across today, in articles and even text books aimed at introducing and educating the world about the “sexiest job of the 21st century.” First created by Drew Conway, it illustrates the three broad skill groups you need to be a data scientist.

data science skillset

Data science is a new career for the age of Big Data (whatever that means this week), but you can see that it’s at the intersection of qualities many people have been developing for years. As a graduate of the Science to Data Science (S2DS) summer school, I know people who have come to data science from a wide variety of backgrounds and found a new niche for themselves.

However, I believe there’s something missing from this picture — a vital skill that comes in many forms and needs constant practice and adaption to the situation at hand: communication.

This isn’t just a “soft” or “secondary” skill that’s nice to have. It’s a must-have for good data scientists.

As I mentioned, many data scientists are coming into commercial jobs directly from academic positions or after short intensive courses. You go from a situation where you are surrounded by peers who are also experts in your field, or who you can easily assume have a reasonable background and can keep up with you, to a situation where you might be the only expert in the room and expected to explain complex topics to those with little or no scientific background.

Not only that, but in an academic setting you can reliably predict the types of information people need or the questions they’ll ask: rationale, methods, results, conclusions etc. It’s a strict, linear way of thinking. As a new data scientist, or even a more experienced one, how are you supposed to predict what those strange creatures in sales or marketing might want to know? Even more importantly, how do you interact with external clients, whose logic and thought processes may not match your own? How do you manage up, across, and down?

My answer to this is not to predict or guess what people will want to know but to try to adapt my communication style to fit the person I’m talking to — and to listen to them and their needs. There is no point confusing someone with a long, detailed answer when all they want is a yes or no, or one number.

For example, over the last year at Qriously we’ve been developing our Audience Segments product, and from the beginning it’s been a big challenge in communication. Once we had our mathematical framework, how we communicated these ideas to the dev team who have built the computing capabilities was very different from how we talked with the sales team who must go out and sell it. Listening to their questions helped me understand their needs and focus our discussions as well as define the right metrics to measure our performance.

To be open and transparent with clients, we can’t just explain the potential for our products, we need to explain the possible pitfalls as well. We have started running “under-the-hood” sessions with some of our clients where they visit our offices and we talk about some of the more technical aspects of what we do. These are informal sessions, though, so people don’t want a math lecture or a discussion on coding practices. In this case, the challenge is finding the right balance between the formal, the detail, and the enjoyment.

If any of the communication had failed, our product would never have got off the ground. It has all made me appreciate how vital communication is as a data scientist. I can learn about as many algorithms or cool new tools as I want, but if I can’t explain why I might want to use them to anyone, then it’s a complete waste of my time and theirs.

Considering this, I propose a slight modification to Drew Conway’s original diagram. The original three skill sets still stand, but now we include a fourth skill that is critical in order to be a successful data scientist.

data science revised skillset

Emma Walker is a data scientist at Qriously.

Click Here For Original Source Of The Article

About Ms. A. C. Kennedy

Ms. A. C. Kennedy
My name is Ms A C Kennedy and I am a Health practitioner and Consultant by day and a serial blogger by night. I luv family, life and learning new things. I especially luv learning how to improve my business. I also luv helping and sharing my information with others. Don't forget to ask me anything!

Check Also

Existing EV batteries could be recharged five times faster

Lithium-ion batteries have massively improved in the last half-decade, but there are still issues. The biggest, especially for EVs, is that charging takes too long to make them as useful as regular cars for highway driving. Researchers from the University of Warwick (WMG) have discovered that we may not need to be so patient, though. They developed a new type of sensor that measures internal battery temperatures and discovered that we can probably recharge them up to five times quicker without overheating problems.

Overcharging a lithium-ion battery anode can lead to lithium buildup, which can break through a battery's separator, create a short-circuit and cause catastrophic failure. That can cause the electrolyte to emit gases and literally blow up the battery, so manufacturers impose strict charging power limits to prevent it.

Those limits are based on hard-to-measure internal temperatures, however, which is where the WMG probe comes in. It's a fiber optic sensor, protected by a chemical layer that can be directly inserted into a lithium-ion cell to give highly precise thermal measurements without affecting its performance.

The team tested the sensor on standard 18650 li-ion cells, used in Tesla's Model S and X, among other EVs. They discovered that they can be charged five times faster than previously thought without damage. Such speeds would reduce battery life, but if used judiciously, the impact would be minimized, said lead researcher Dr. Tazdin Amietszajew.

Faster charging as always comes at the expense of overall battery life but many consumers would welcome the ability to charge a vehicle battery quickly when short journey times are required and then to switch to standard charge periods at other times.

There's still some work to do. While the research showed the li-ion cells can support higher temperatures, EVs and charging systems would have to have "precisely tuned profiles/limits" to prevent problems. It's also not clear how battery makers would install the sensors in the cells.

Nevertheless, it shows a lot of promise for much faster charging speeds in the near future. Even if battery capacities stayed the same, charging in 5 minutes instead of 25 could flip a lot of drivers over to the green side.

Via: Clean Technica

Source: University of Warwick