Home / Software & Service News / Researchers discover a better way to make ammonia

Researchers discover a better way to make ammonia

For the past century or so, we’ve been making ammonia the same way that Nobel-prize winning chemist Fritz Haber did: by smashing hydrogen and nitrogen gas together at 250 atmospheres and heating them to nearly 1000 degrees F. But a new method developed at the University of Utah turns that process on its head.

Rather than brute force the gas’ ionic bonds apart to reform ammonia (NH3), the Utah method breaks them apart with nitrogen-fixing enzymes called nitrogenases. These are the only known enzymes that naturally convert nitrogen to ammonia and are used by a number of anaerobic bacterial species. These enzymes not only create ammonia at room temperature, they also generate a small amount of electricity.

The team hopes to use these enzymes, as well as another hydrogen-fixing variety known as hydrogenase, to create fuel cells. These devices would strip electrons from hydrogen gas and feed them into a the nitrogen-reducing reaction to create ammonia and power. However, before the team can scale up the technology to a viable level, they’ve first got to figure out how to deal with nitrogenases’ sensitivity to oxygen and how to keep the process going without relying on ATP to drive the enzymic action. Those are both daunting challenges. Still, at least we now have an easier means of making ammonia.

Source: PhysOrg

Click Here For Original Source Of The Article

About Ms. A. C. Kennedy

Ms. A. C. Kennedy
My name is Ms A C Kennedy and I am a Health practitioner and Consultant by day and a serial blogger by night. I luv family, life and learning new things. I especially luv learning how to improve my business. I also luv helping and sharing my information with others. Don't forget to ask me anything!

Check Also

Existing EV batteries could be recharged five times faster

Lithium-ion batteries have massively improved in the last half-decade, but there are still issues. The biggest, especially for EVs, is that charging takes too long to make them as useful as regular cars for highway driving. Researchers from the University of Warwick (WMG) have discovered that we may not need to be so patient, though. They developed a new type of sensor that measures internal battery temperatures and discovered that we can probably recharge them up to five times quicker without overheating problems.

Overcharging a lithium-ion battery anode can lead to lithium buildup, which can break through a battery's separator, create a short-circuit and cause catastrophic failure. That can cause the electrolyte to emit gases and literally blow up the battery, so manufacturers impose strict charging power limits to prevent it.

Those limits are based on hard-to-measure internal temperatures, however, which is where the WMG probe comes in. It's a fiber optic sensor, protected by a chemical layer that can be directly inserted into a lithium-ion cell to give highly precise thermal measurements without affecting its performance.

The team tested the sensor on standard 18650 li-ion cells, used in Tesla's Model S and X, among other EVs. They discovered that they can be charged five times faster than previously thought without damage. Such speeds would reduce battery life, but if used judiciously, the impact would be minimized, said lead researcher Dr. Tazdin Amietszajew.

Faster charging as always comes at the expense of overall battery life but many consumers would welcome the ability to charge a vehicle battery quickly when short journey times are required and then to switch to standard charge periods at other times.

There's still some work to do. While the research showed the li-ion cells can support higher temperatures, EVs and charging systems would have to have "precisely tuned profiles/limits" to prevent problems. It's also not clear how battery makers would install the sensors in the cells.

Nevertheless, it shows a lot of promise for much faster charging speeds in the near future. Even if battery capacities stayed the same, charging in 5 minutes instead of 25 could flip a lot of drivers over to the green side.

Via: Clean Technica

Source: University of Warwick

css.php