Home / Software & Service News / NASA will test a key deep space navigation tool this year

NASA will test a key deep space navigation tool this year

The Deep Space Atomic Clock (DSAC) is finally ready for testing, and NASA’s JPL has begun preparing it for launch this year after working on it for two decades. Current space vehicles and observatories already use atomic clocks for navigation — they are, after all, some of the most accurate timekeeping devices ever. However, the way they work isn’t ideal for use in vessels going beyond Low-Earth Orbit.

See, the atomic clocks space agencies and companies use today need to be paired with ground-based antennas. The antenna sends signals to a spacecraft, and the vessel sends them back to Earth. Current clocks use the difference in time between sending and receiving a signal to calculate a space vehicle’s location, path and velocity. It then relays commands to the spacecraft based on those calculations. While signals travel at the speed of light, that process can still take hours — the farther the spacecraft is, the longer it has to wait for a signal. Deep Space Atomic Clock solves that issue by being onboard the spacecraft itself, which means it doesn’t need to rely on two-way tracking.

It can use the signal sent from Earth to calculate for its host’s position and velocity without having to toss that signal back. That means vehicles can move and change course more quickly than current ones can, and they can focus on completing mission objectives rather than spend time readjusting antennas. In addition, DSAC will allow ground-based antennas to keep track of multiple satellites in one area — say the Martian orbit — since they don’t need to wait for vehicles to respond.

DSAC will launch this year attached to General Atomic’s Orbital Test Bed spacecraft, which will blast off aboard the US Air Force Space Technology Program mission. It can head to space as a hosted payload, because it’s about the size of a four-slice toaster, much smaller than current fridge-sized atomic clocks — the agency could shrink it down even further for future missions. JPL’s ultimate goal is achieving a .03 nanosecond accuracy, but it’ll call the upcoming test a success if the prototype can maintain time accurately to within two nanoseconds.

Source: NASA

Click Here For Original Source Of The Article

About Ms. A. C. Kennedy

Ms. A. C. Kennedy
My name is Ms A C Kennedy and I am a Health practitioner and Consultant by day and a serial blogger by night. I luv family, life and learning new things. I especially luv learning how to improve my business. I also luv helping and sharing my information with others. Don't forget to ask me anything!

Check Also

Existing EV batteries could be recharged five times faster

Lithium-ion batteries have massively improved in the last half-decade, but there are still issues. The biggest, especially for EVs, is that charging takes too long to make them as useful as regular cars for highway driving. Researchers from the University of Warwick (WMG) have discovered that we may not need to be so patient, though. They developed a new type of sensor that measures internal battery temperatures and discovered that we can probably recharge them up to five times quicker without overheating problems.

Overcharging a lithium-ion battery anode can lead to lithium buildup, which can break through a battery's separator, create a short-circuit and cause catastrophic failure. That can cause the electrolyte to emit gases and literally blow up the battery, so manufacturers impose strict charging power limits to prevent it.

Those limits are based on hard-to-measure internal temperatures, however, which is where the WMG probe comes in. It's a fiber optic sensor, protected by a chemical layer that can be directly inserted into a lithium-ion cell to give highly precise thermal measurements without affecting its performance.

The team tested the sensor on standard 18650 li-ion cells, used in Tesla's Model S and X, among other EVs. They discovered that they can be charged five times faster than previously thought without damage. Such speeds would reduce battery life, but if used judiciously, the impact would be minimized, said lead researcher Dr. Tazdin Amietszajew.

Faster charging as always comes at the expense of overall battery life but many consumers would welcome the ability to charge a vehicle battery quickly when short journey times are required and then to switch to standard charge periods at other times.

There's still some work to do. While the research showed the li-ion cells can support higher temperatures, EVs and charging systems would have to have "precisely tuned profiles/limits" to prevent problems. It's also not clear how battery makers would install the sensors in the cells.

Nevertheless, it shows a lot of promise for much faster charging speeds in the near future. Even if battery capacities stayed the same, charging in 5 minutes instead of 25 could flip a lot of drivers over to the green side.

Via: Clean Technica

Source: University of Warwick

Leave a Reply

Your email address will not be published. Required fields are marked *