Home / Software & Service News / Event Horizon Telescope will soon take the first black hole photo

Event Horizon Telescope will soon take the first black hole photo

The Event Horizon Telescope (EHT) is finally ready to take a picture of Sagittarius A*. From April 5th to 14th this year, the virtual telescope that’s been in the making for the past two decades will peer into the supermassive black hole in the center of our galaxy. EHT is actually an array of radio telescopes located in different countries around the globe, including the Atacama Large Millimeter/submillimeter Array in Chile.

By using a technique called very-long-baseline interferometry, the EHT team turns all the participating observatories into one humongous telescope that encompasses the whole planet. We need a telescope that big and powerful, because Sagittarius A* is but a tiny pinprick in the sky for us. While scientists believe it has a mass of around four million suns, it also only measures around 20 million km or so across and is located 26,000 light-years away from our planet. The EHT team says it’s like looking at a grapefruit or a DVD on the moon from Earth.

To prepare the participating observatories, the team equipped them with atomic clocks for the most precise time stamps and hard-drive modules with enormous storage capacities. Since the scientists are expecting to gather a colossal amount of data, they deployed enough modules to match the capacity of 10,000 laptops. Those hard drives will be flown out to the MIT Haystack Observatory, where imaging algorithms will make sense of EHT’s data, once the observation period is done.

The researchers said it could take until the beginning of 2018 before we see humanity’s first photo of a black hole. As for what they’re expecting to see, it’ll be something like what their simulation yielded last year:

Based on Einstein’s theory of general relativity, we’re supposed to see a crescent of light surrounding a black blob. That light is emitted by gas and dust before the black hole devours them, while the dark blob is the shadow cast over that mayhem. But what if we see something else altogether? Team leader Sheperd Doeleman from the Harvard-Smithsonian Center for Astrophysics told BBC:

“As I’ve said before, it’s never a good idea to bet against Einstein, but if we did see something that was very different from what we expect we would have to reassess the theory of gravity.”

[Image credit: NASA/UMass/D.Wang et al., IR: NASA/STScI / Feryel Ozel (event horizon simulation)]

Via: ScienceAlert

Source: BBC

Click Here For Original Source Of The Article

About Ms. A. C. Kennedy

Ms. A. C. Kennedy
My name is Ms A C Kennedy and I am a Health practitioner and Consultant by day and a serial blogger by night. I luv family, life and learning new things. I especially luv learning how to improve my business. I also luv helping and sharing my information with others. Don't forget to ask me anything!

Check Also

Kevlar cartilage could help you recover from joint injuries

It can be difficult to fully recover from knee injuries or other damage to your joints, if just because there hasn't been an artificial replacement for cartilage that can withstand as much punishment as the real thing. That may not be an issue in the long run, though: scientists have developed a Kevlar-based hydrogel that behaves like natural cartilage. It mixes a network of Kevlar nanofibers with polyvinyl alcohol to absorb water at rest (like real cartilage does in idle moments) and become extremely resistant to abuse, but releases it under stress -- say, a workout at the gym.

You don't even need a lot of it to replicate a human body's sturdiness and overall functionality. A material with 92 percent water is about as tough as real cartilage, while a 70 percent mix is comparable to rubber. Previous attempts at simulating cartilage couldn't hold enough water to transport nutrients to cells, which made them a poor fit for implants.

There's a long way to go before the material becomes useful. Researchers are hoping to patent the substance and find companies to make it a practical reality. The implications are already quite clear, mind you. If it works as well in patients as it does in lab experiments, it could lead to cartilage implants that are roughly as good as the real tissue they replace. A serious knee injury might not put an end to your running days.

Source: University of Michigan, Wiley Online Library

css.php