Home / Software & Service News / Event Horizon Telescope will soon take the first black hole photo

Event Horizon Telescope will soon take the first black hole photo

The Event Horizon Telescope (EHT) is finally ready to take a picture of Sagittarius A*. From April 5th to 14th this year, the virtual telescope that’s been in the making for the past two decades will peer into the supermassive black hole in the center of our galaxy. EHT is actually an array of radio telescopes located in different countries around the globe, including the Atacama Large Millimeter/submillimeter Array in Chile.

By using a technique called very-long-baseline interferometry, the EHT team turns all the participating observatories into one humongous telescope that encompasses the whole planet. We need a telescope that big and powerful, because Sagittarius A* is but a tiny pinprick in the sky for us. While scientists believe it has a mass of around four million suns, it also only measures around 20 million km or so across and is located 26,000 light-years away from our planet. The EHT team says it’s like looking at a grapefruit or a DVD on the moon from Earth.

To prepare the participating observatories, the team equipped them with atomic clocks for the most precise time stamps and hard-drive modules with enormous storage capacities. Since the scientists are expecting to gather a colossal amount of data, they deployed enough modules to match the capacity of 10,000 laptops. Those hard drives will be flown out to the MIT Haystack Observatory, where imaging algorithms will make sense of EHT’s data, once the observation period is done.

The researchers said it could take until the beginning of 2018 before we see humanity’s first photo of a black hole. As for what they’re expecting to see, it’ll be something like what their simulation yielded last year:

Based on Einstein’s theory of general relativity, we’re supposed to see a crescent of light surrounding a black blob. That light is emitted by gas and dust before the black hole devours them, while the dark blob is the shadow cast over that mayhem. But what if we see something else altogether? Team leader Sheperd Doeleman from the Harvard-Smithsonian Center for Astrophysics told BBC:

“As I’ve said before, it’s never a good idea to bet against Einstein, but if we did see something that was very different from what we expect we would have to reassess the theory of gravity.”

[Image credit: NASA/UMass/D.Wang et al., IR: NASA/STScI / Feryel Ozel (event horizon simulation)]

Via: ScienceAlert

Source: BBC

Click Here For Original Source Of The Article

About Ms. A. C. Kennedy

Ms. A. C. Kennedy
My name is Ms A C Kennedy and I am a Health practitioner and Consultant by day and a serial blogger by night. I luv family, life and learning new things. I especially luv learning how to improve my business. I also luv helping and sharing my information with others. Don't forget to ask me anything!

Check Also

Existing EV batteries could be recharged five times faster

Lithium-ion batteries have massively improved in the last half-decade, but there are still issues. The biggest, especially for EVs, is that charging takes too long to make them as useful as regular cars for highway driving. Researchers from the University of Warwick (WMG) have discovered that we may not need to be so patient, though. They developed a new type of sensor that measures internal battery temperatures and discovered that we can probably recharge them up to five times quicker without overheating problems.

Overcharging a lithium-ion battery anode can lead to lithium buildup, which can break through a battery's separator, create a short-circuit and cause catastrophic failure. That can cause the electrolyte to emit gases and literally blow up the battery, so manufacturers impose strict charging power limits to prevent it.

Those limits are based on hard-to-measure internal temperatures, however, which is where the WMG probe comes in. It's a fiber optic sensor, protected by a chemical layer that can be directly inserted into a lithium-ion cell to give highly precise thermal measurements without affecting its performance.

The team tested the sensor on standard 18650 li-ion cells, used in Tesla's Model S and X, among other EVs. They discovered that they can be charged five times faster than previously thought without damage. Such speeds would reduce battery life, but if used judiciously, the impact would be minimized, said lead researcher Dr. Tazdin Amietszajew.

Faster charging as always comes at the expense of overall battery life but many consumers would welcome the ability to charge a vehicle battery quickly when short journey times are required and then to switch to standard charge periods at other times.

There's still some work to do. While the research showed the li-ion cells can support higher temperatures, EVs and charging systems would have to have "precisely tuned profiles/limits" to prevent problems. It's also not clear how battery makers would install the sensors in the cells.

Nevertheless, it shows a lot of promise for much faster charging speeds in the near future. Even if battery capacities stayed the same, charging in 5 minutes instead of 25 could flip a lot of drivers over to the green side.

Via: Clean Technica

Source: University of Warwick

css.php